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Abstract
Odyssey 2024 Emotion Recognition Challenge aims to compare
different emotion recognition systems in two tasks: classifying
speech across eight emotional classes and predicting emotional
attributes for arousal, valence and dominance. This paper de-
scribes TalTech’s systems prepared for the challenge that fuse
the predictions of text and speech based emotion recognition
models. The audio-based model adapts the Wav2Vec2-BERT
model for emotion recognition, while the text-based model uses
finetuned LLaMA2-7B as the backbone. The two models are
combined for the classification task by training a multi-class
logistic regression model, using the posteriors of the underly-
ing models as input features. The model obtained a macro-F1
score of 0.354 on evaluation data and was ranked 2nd among
all teams. The fusion model for the attribute prediction task
achieved an average score of 0.5144 and was thereby ranked
6th among the teams.

1. Introduction
Speech, as the most instinctual mode of expression, conveys
not only the intended message but also encodes rich informa-
tion about the speaker’s identity, emotional state, and language.
Recognizing the emotional content in speech, or speech emo-
tion recognition (SER), has been a field of study for over two
decades [1]. This domain has broad applications ranging from
improving human-computer interaction [2] to analyzing dia-
logues in call centers [3]. Despite its longstanding presence
and wide applicability, emotion detection in speech presents
significant challenges, primarily due to the subjective nature of
emotions themselves. There is a notable lack of consensus on
how emotions should be measured or categorized, which com-
plicates the task of developing accurate and reliable SER sys-
tems [4].

SER systems must accommodate different speakers and
languages while recognizing emotional aspects of the speech
signal, while nullifying other aspects such as linguistic and
cultural information [5]. Recent research have described the
SER process to consist of three steps, which are data pre-
processing, feature extraction, and classification of audio sig-
nals. Recently self-supervised transformer-based models have
shown good performance in in different automatic speech pro-
cessing tasks, with models such as wav2vec [6] and wav2vec2.0
[7] being proposed. The wav2vec2.0 framework enables self-
supervised learning of speech representations by masking la-
tent representations of the raw waveform and solving a con-
trastive task over quantized speech representations, achieving
state of the art results in many speech processing benchmarks
and evaluations, ranging from speech recognition [7] to spoken
language identification [8]. It has also been successfully used
for emotion recognition [9, 10, 11].

Alternatively, emotion recognition can be done in the text
domain by firstly transcribing the speech. Emotion recogni-
tion from text is mainly based on identifying keywords and
understanding the context, and consists of rule-based, classical
learning-based, deep learning and hybrid methods. Pretrained
language models (PLM) based on various architectures that
have been trained on large unlabeled datasets, such as BERT
[12], have shown good results in various NLP tasks. Scaling up
language models has shown to be an effective way to improve
performance in downstream tasks, leading to the introduction
of large language models (LLMs). LLMs such as LLaMA 2
are pretrained on a large amounts of text using the next-word
predicion task [13]. LLMs are characterized by their large pa-
rameter size which typically reaches tens of billions and possess
stronger generalization capability across a wide range of down-
stream tasks. However, as LLMs are not designed for emotion
understanding task, specific models can be trained as in [14],
where an emotion and context knowledge enhanced LLM (Di-
alogueLLM) was proposed. These models can be adeptly fine-
tuned from publicly available LLMs using parameter-efficient
methodologies such as low-rank adaptation (LoRA) [15], opti-
mizing them for speech emotion recognition (SER) tasks.

This paper describes the systems built by the Tallinn Uni-
versity of Technology (TalTech) team for the Odyssey 2024
Emotion Recognition Challenge. Our models are based on
two freely available foundation models: Wav2Vec2-BERT for
speech and LLaMA2-7B for text. Both models are adapted
to emotion recognition using additional output layers and the
foundation model backbones are finetuned for emotion classi-
fication using LoRA. For the emotion classification task, the
two models are combined using an additional logistic regres-
sion model that uses the posteriors of the underlying models
as input. For emotional attribute prediction, we combine the
models using attribute-specific interpolation weights. Our best
systems were ranked second in the emotion classification task
and sixth in the emotional attribute prediction task.

2. Data
The training, development and evaluation data for the challenge
originates from the MSP-Podcast Corpus [16]. The training
dataset encompasses 68,119 speaking turns, while the develop-
ment set consists of 19,815 segments from 454 speakers. The
test dataset includes 2,347 unique segments from 187 speakers,
with labels that remain undisclosed to the public. The segments
for the test set have been curated to maintain a balanced rep-
resentation based on primary categorical emotions. The utter-
ances in the corpus were selected from podcasts with sponta-
neous conversations. The average duration of utterances in the
training set is 5.8 seconds. Emotional annotation of these utter-
ances was conducted via crowdsourcing, where each utterance



Table 1: Different speech and text-based foundation models
used in our experiments.

Model Modality #Parameters

Wav2Vec2-BERT Speech 555M
SONAR-speech-encoder-eng Speech 628M
RoBERTa-large Text 355M
LLaMa2-7b Text 6.74B
LLaMa2-70b Text 69B

received multiple annotations to capture the perceived primary
emotional category — such as anger, contempt, disgust, fear,
happiness, neutral, sadness, and surprise — as well as any appli-
cable secondary categories. Additionally, annotators evaluated
each utterance on three emotional attribute dimensions: valence
(ranging from very negative to very positive), arousal (from
very calm to very active), and dominance (from very weak to
very strong), employing a seven-point Likert scale for each di-
mension. A singular, aggregate categorical label was assigned
to each utterance based on the majority vote rule. The label “No
Agreement” was reserved for utterances lacking a majority con-
sensus. The aggregate mean values of emotional attributes are
also provided for all labelled utterences.

The training and development datasets are also annotated
by speaker identity and speaker gender. Human-made transcrip-
tions and forced alignments between the transcript words and
the audio is also provided.

Since there are no transcripts of the test data provided,
we decided to automatically transcribe all data splits on our
own, in order for the evaluation data transcripts to be consis-
tent with training and development data. This was done using
the NVIDIA NeMo Canary 1B1 multilingual ASR model [17],
using greedy decoding.

3. Methods
Our approach to emotion recognition is based on finetuning
speech or text based foundation models. Table 1 provides a
overview of the models with which we conducted our experi-
ments.

3.1. Speech-based emotion recognition

For both emotion category and emotion attribute prediction di-
rectly from speech, we use a model based on the Wav2Vec2-
BERT model2 shared by the Seamless4MT project [18]. This
model was pre-trained on 4.5M hours of unlabeled audio data
covering more than 143 languages, using self-supervised loss.
Wav2Vec2-BERT follows the same architecture as Wav2Vec2.0
[7], but replaces the attention-block with a Conformer-block as
introduced in [19]. It also employs a causal depthwise con-
volutional layer and uses mel-spectrogram representation of
the audio as input, instead of the raw waveform. Wav2Vec2-
BERT uses Shaw-like position embeddings [20]. This partic-
ular Wav2Vec2-BERT model comprises 24 Conformer layers
with approximately 600M parameters.

The Wav2Vec2-BERT model was adapted into an emotion
classification model by aggregating its outputs with an atten-
tive pooling layer, followed by a fully connected layer fea-
turing ReLU activation and BatchNorm, and the final output

1https://huggingface.co/nvidia/canary-1b
2https://huggingface.co/facebook/w2v-bert-2.0

layer, corresponding to the emotion categories of the training
dataset. This model categorizes emotions into eight primary
classes, along with “O” (Other) and “X” (No agreement) as
additional distinct classes for training purposes. Training uses
cross-entropy loss on random 2 to 4 second chunks of emotion-
labeled utterances, employing consensus-based labels derived
from plurality voting rather than directly utilizing individual an-
notator labels. To enhance model robustness, on-the-fly data
augmentation was applied using point source noises and simu-
lated room impulse responses (RIRs) from the MUSAN corpus.
The model underwent a training regimen spanning 10 epochs,
with optimization via the Adam optimizer, a peak learning rate
of 10−4, weight decay 0.001 and an effective batch size of 64.
Additionally, speed perturbation was applied to half of the train-
ing batches to further diversify training data. LoRA was em-
ployed to fine-tune the pre-trained model, optimizing its per-
formance with a configuration (rank = 32, α = 32 and
dropout = 0.05). Due to the use of LoRA, there are only
around 8 million trainable parameters. The emotion classifica-
tion model was not directly used for prediction but it served as
an embedding extractor. Utterance embeddings were derived
from the output of the first dense layer following the pooling
layer. A logistic regression model was then trained on these em-
beddings, excluding data labeled as “X” and “O” with feature
normalization and dimensionality reduction to 15 using LDA.
The training data is highly unbalanced with regard to the emo-
tion categories. However, the emotion distribution in evaluation
data is uniform. Therefore, we post-processed the trained lo-
gistic regression model to use uniform prior over the 8 emotion
categories, by appropriately modifying the biases of the softmax
layer.

For audio-based emotion attribute prediction, the model
structure mirrored that of the emotion classification model, but
replaced the final softmax layer with a tanh nonlinearity, fol-
lowed by an additional linear layer with three outputs. Training
initially used 3 to 4-second audio chunks, with subsequent fine-
tuning on 6 to 8-second segments, using training data where
the proportion of different categories had been balanced. This
adjustment was done because it was noticed that for the neu-
tral category (which was dominating in training data), the mean
value for most attributes was considerably lower than for other
categories. As a loss function, we used negative average con-
cordance correlation coefficient of the current batch.

3.2. Text-based emotion recognition

For attribute and category prediction from the text, an open-
source LLaMA 23 LLM with 7 billion parameters is fine-tuned
for the two tasks. In the category prediction task, the model is
initialized with a sequence classification head, which is a linear
layer using the last token in order to do the classification, similar
to other causal models. The linear layer is initialized with 8 fea-
tures according to the number of categories to be predicted. The
model is trained on automatically generated utterance transcrip-
tions. In order to tackle the attribute prediction task, the model
is initialized with a sequence classification head configured with
three output features corresponding to the arousal, valence, and
dominance attributes. The model is fine-tuned using a regres-
sion task with a loss function based on the mean concordance
correlation coefficient of the attributes. LoRA adapter is used
(rank = 256, α = 256 and dropout = 0.1) for efficient
fine-tuning over 40 epochs, using AdamW optimizer, a learning

3https://huggingface.co/meta-LLaMA/
LLaMA-2-7b-hf



Table 2: Concordance correlation coefficient (CCC) scores of various models on Task 2 balanced development and evaluation data.

Devbal Eval

ID Valence Arousal Dominance Average Valence Arousal Dominance Average

Official baseline 0.6069 0.5667 0.4244 0.5327

#1 Wav2Vec2-BERT 0.6063 0.5442 0.4430 0.5312
#2 + finetuning on balanced data 0.6295 0.5712 0.4772 0.5593
#3 RoBERTa 0.5863 0.2676 0.2740 0.3760
#4 LLaMA2-7b 0.5932 0.2634 0.2532 0.3699

#5 Fusion #2 + #4 0.6771 0.5712 0.4772 0.5752 0.6362 0.5417 0.3655 0.5144

Table 3: Macro F1 scores of various models in Task 1.
ID Model Devfilt Devbal Eval

Official baseline 0.311

#1 Wav2Vec2-BERT 0.241 0.169
#2 + Balanced prior 0.283 0.297
#3 RoBERTA 0.292 0.268
#4 + Balanced prior 0.273 0.307
#5 LLaMA2-7b 0.281 0.248
#6 + Balanced prior 0.276 0.311

#7 Fusion: interpolation (#2 + #6) - 0.354 0.350
#8 Fusion: log. reg (#2 + #6) - 0.381 0.354

Post-evaluation experiments
#9 SONAR-speech-eng + PLDA 0.327
#10 LLaMA2-70b, balanced prior 0.334
#11 Fusion: interpolation (#9 + #10) 0.362

rate of 2 × 10−5 and a batch size of 16. As LLaMA does not
have a pad token we set it to be the same as EOS token.

As an alternative method, we train a model using
RoBERTa4 [21] as the backbone. The model utilizes the same
architecture as with the LLM model and is finetuned with sim-
ilar hyper-parameters, however it is not necessary to utilize a
LoRa adapter, as parameters can be finetuned directly.

In order to rebalance the predictions of the text-based model
to follow a uniform prior over the categories, we “fix” the con-
ditional probability distribution P (y|x) returned by the emotion
identification model for input x to use the uniform prior:

P ′(y|x) =
Pu(y)
P ′(y) × P (y|x)

Z

where Z is a normalizing factor, Pu(y) a uniform prior ( 1
8

for
the 8 main categories, 0 for the pseudo-categories “X” and “O”)
and P ′(y) is the prior probability of emotion categories in train-
ing data.

3.3. Combining outputs from audio and text-based models

3.3.1. Emotion category identification

We tried two approaches for fusing predictions from audio and
text-based models. In the first approach we simply linearly in-
terpolate the posterior probabilities produced by different mod-
els, using an interpolation coefficient optimized on the bal-

4https://huggingface.co/FacebookAI/
roberta-large

anced development data. The optimal interpolation coefficient
is found using grid search from the interval of [0, 1] using a step
size of 0.05.

In the second approach, we train a multi-class logistic re-
gression model, using the posteriors of the underlying models
as input features. L2 penalty with the value of 1.0 is used for
avoiding overfitting.

3.3.2. Emotion attribute prediction

In the emotion attribute prediction task, we used linear inter-
polation for fusing the predictions of two models. For each
attribute dimension, an optimal interpolation coefficient was
found.

4. Results

We tested our models on the official development split of the
provided dataset as well as its several subsets. Development
data contains items whose consensus-based emotion category
labels is “X” or “O”. As the evaluation data was guaranteed
to contain only items labelled using the eight primary emotion
categories, we created a dataset Devfilt where items labelled
as “X” or “O” are removed. However, Devfilt is still highly
unbalanced with regard to the emotion categories. To fix this,
we created another subset Devbal that contains 300 randomly
selected items for each primary category, making it more similar
to the evaluation dataset that is balanced across category labels.
This subset was used for optimizing all hyperparameters and for
training fusion models.

4.1. Emotion category prediction

The macro-F1 scores of different models on development and
evaluation data (where available) are shown in Table 3. Among
our individual models, it is surprising to see that the F1 scores of
the text-based models surpass those of the audio-based models,
with the LLaMA2-based model with balanced priors being the
most accurate. However, interpolating its predictions with those
of a audio-based model provides substantial improvements both
on development and evaluation data. The optimal interpolation
coefficient of the text-based model was 0.45. Fusion using lo-
gistic regression gives noticeably larger improvements on de-
velopment data than on evaluation data, suggesting moderate
overfitting on development data. Our two fusion systems were
ranked 2nd and 3rd among all submissions of Task 1 of the chal-
lenge.



4.2. Emotion attribute prediction

Table 2 presents the CCC scores for various emotional at-
tribute prediction models, evaluated on both the balanced de-
velopment data and the evaluation dataset. The findings un-
derscore the significance of fine-tuning the audio-based emo-
tion model with balanced data, as this process notably enhances
CCC scores across all evaluated attributes. Intriguingly, the
text-based model demonstrates an impressive accuracy in pre-
dicting valence, with its optimal interpolation coefficient in the
fusion identified at 0.55. However, for the other two categories
— arousal and dominance — the text-based model’s predictions
do not contribute positively when optimized on development
data, and the corresponding optimal interpolation coefficients
were set to zero.

Despite these adjustments, our fusion model, which inte-
grates both audio and text-based predictions, did not surpass the
baseline model in terms of the average CCC metric on evalua-
tion data. While our model achieved the highest accuracy in va-
lence prediction among all submissions in the challenge, it sig-
nificantly underperformed in predicting arousal and dominance.
The discrepancy in performance across different attributes has
yet to be fully understood and resolved. In terms of the aver-
age CCC score, our best submission was ranked 6th in the team
ranking.

5. Post-evaluation experiments
In the post-evaluation phase, we experimented with some ad-
ditional pretrained models. First, we finetuned the English
SONAR speech encoder model5 [22] for emotion identification.
SONAR speech encoders are based on the finetuned Wav2Vec2-
BERT model, with an additional sentence embedding layer that
is trained to map spoken utterance embeddings into the same
semantic space as the corresponding text-based sentence em-
beddings. The embedding layer uses simple mean pooling.
We didn’t use the SONAR model as-is, but finetuned it for
emotion recognition using LoRA, using the same hyperparam-
eters as when training the Wav2Vec2-BERT based model. Us-
ing SONAR embeddings instead of a self-supervised model is
partly inspired by previous research that has shown that en emo-
tion recognition model benefits from pretraining on an ASR
task [11]. Row #9 in Table 3 shows that the SONAR-based
model indeed outperforms Wav2Vec2-BERT based model. In
this model, we also replaced logistic regression based classifi-
cation of the utterance embeddings with PLDA-based scoring.
PLDA is a generative model and does not depend on the prior
probability of the different categories in the training data, elim-
inating thus the need for the prior balancing step.

Secondly, we finetuned the larger 70 billion parameter vari-
ant of the LLaMA2 model6 for text based emotion classifica-
tion. As the model is much larger, we utilized quantization to
load the model weights and activations with lower 4-bit data
types, which is a technique to reduce memory and computa-
tional cost. In addition we utilize nested quantization, which
saves additional memory with minimal performance impact.
Due to experiencing overflow issues while training the model
with fp16 computational type, we selected bf16 for its larger dy-
namic range. These methods allowed us to finetune the model
with our 80GB A100 GPUs. We finetuned our model for 4
epochs with a LoRa rank of 16, alpha of 16 and dropout of 0.05.

5https://github.com/facebookresearch/SONAR
6https://huggingface.co/meta-llama/

Llama-2-70b-hf

Row #10 in Table 3 shows that the model outperforms our 7 bil-
lion parameter model wiht a F1 score of 0.334 on our balanced
dataset. The model additionally outperformed the previously
mentioned SONAR-based model. Row #11 shows that fusing
the SONAR and larger LLaMA2 model outperforms previous
interpolation of Wav2Vec2-BERT and LLaMA2-7b models re-
sults with an F1 score of 0.362.

6. Conclusion
Our results showed that combining state-of-the-art foundation
models from the audio and text domains is efficient for emo-
tion recognition, as it allowed us to obtain high-ranked results
in both tasks in the Odyssey 2024 Emotion Recognition Chal-
lenge. Our experiments suggested that it is also important to
tune the models’ predictions to the expected prior probabilities
of the evaluation data. The accuracy of our models in predicting
emotional attributes however remained uneven, which suggests
a possible direction for future work.
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Jarosław Spyrka, “Emotion recognition method for
call/contact centre systems,” Applied Sciences, vol. 12,
no. 21, pp. 10951, 2022.
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